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Al / Al(100) B3I / Si Pd / MgO 

How can we simulate the dynamics of molecular

systems over experimental time scales?




Objective:

To calculate dynamics of a surface over time scales which are much longer 
than can be calculated with direct classical dynamics. 

Problem: time scale gap 

fs ps ns ms ms s mins 
atomic dynamics thermally activated experimental
vibrations simulations reaction dynamics time scales 

Most interesting transitions are rare 

0.5 eV

1000/s 
events (much slower than vibrations) 

Simulating a transition for a typical 
rare event with classical dynamics 
can require ~1012 force evaluations 



Transition state theory


A statistical theory for calculating the rate
of slow thermal processes 

The primary task is to find an N-1
dimensional dividing surface that
represents a bottle neck for the transition 

Harmonic transition state theory 
Need to find saddle points on the

energy surface


Rate of escape through each saddle

point region:
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Methods for determining reaction rates


Finding Saddle points Single Ended:
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The Nudged Elastic Band Method


Recent developments: 
•	 Improved tangent 

• Second order optimizers
  - conjugate gradients

•	 Climbing image - quasi-newton (bfgs) 

•	 Double nudging • Internal coordinates 
(Wales) • Rigid constraints (string method) 
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Minimum mode following methods


Dynamics: know the initial state, but 
don’t know the final state! 

•	 Find the lowest curvature mode 
- Dimer method (Voter, Henkelman, Jónsson) 
- Lanczos (Barkema, Mousseau)

- Langrange multipliers (Wales)


•	 Follow the minimum

mode up the potential,

minimize in all other

modes


•	 Many independent

searches can be

used to find unknown

reaction mechanisms
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Adaptive kinetic Monte Carlo
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Combine saddle point searches 
with kinetic Monte Carlo (KMC): 

1.	 Find low energy

saddle points using a

min-mode method.


2. Choose one

processes from a

Boltzman distribution.


3.	 Hop to the final state Probability:


of the chosen

process.
 Rate: 

4.	 Increment time by an

average amount ∆t.


Time: 
5.	 Repeat. 
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Al / Al(100) ripening


Complex events do happen 
•	 A compact island forms in


1 ms at 300K


•	 Find many events which are

not included in standard

KMC event tables


∆E (eV)	 Events 

0.16 

0.05 

0.24 



Al / Al(100) growth


Multi-atom events can be 
important for dynamics 

•	 Exchange events involving 
more than one atom lead 
to smooth growth on Al at 
77K 

•	 Single atom ripening 
events contribute to rough 
growth on Cu 



Dynamics from Density Functional Theory


When there is no accurate 
empirical potential … 

•	 Saddle points can be 
found directly with DFT. 

•	 Min-mode following 
methods are in VASP, 
SIESTA, SOCORRO, and 
CASTEP 

•	 Only a few tens of 
saddle point searches 
are possible in each 
new state 

•	 Can be used to find 
unexpected reaction 
pathways and dynamics 



From DFT to kinetic Monte Carlo:  Pd / MgO


If all important mechanisms are found, 
KMC can reach longer time scales 

•	 DFT calculations of Pd diffusion on 
MgO show that small clusters are more 
mobile than the Pd monomer 

•	 DFT diffusion rates are used in a KMC 
simulation to compare with experiment 

iExper ment 

DFT
 KMC 



Application to Hydrogen Storage Materials

a

H2

b

c

Challenges for simulating the kinetics
of hydrogen storage materials

a. Need to develop potentials for modeling
H2 dissociative adsorption at catalysts,
or use DFT

b. Since H diffusion barriers will change
with environment,  it is unlikely that any
few reaction mechanisms can be used
with standard KMC to model the storage
kinetics of a material

c. A phase change in a material will limit
the use of traditional kinetic Monte Carlo

Provides an exciting opportunity for
new methods!

Storage
Material



Quantum effects for hydrogen kinetics


Zero point and tunneling 
corrections 
•	 Estimate using classical 

normal modes above Tc 

Wigner correction: 
CH4 

Ni(111) 

Tcwhere 

•	 Below Tc, find instanton using Min- ng ∝ N T2 

mode following methods (Jónsson) 
k i

system 
spr

/ N 

Instanton: Saddle point for Feynman

chain to cross the barrier




Adaptive kinetic Monte Carlo


Strengths and weaknesses 

•	 Saddle point searches are independent, and can be computed 
in a parallel (distributed) environment 

•	 Need to find all important (low energy) reaction mechanisms 
- contrast with accelerated dynamics methods (Voter) 

•	 Accuracy determined by sampling: 
- Fewer searches for expensive (DFT) calculations 
- Extensive sampling when using empirical potentials 

•	 No simple relation between sampling and accuracy 

•	 If the important processes are known, they can be used in a 
KMC simulation to reach longer time and length scales 

•	 Can include quantum effects as necessary 
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Freely available software tools 

• http://eon.cm.utexas.edu/ The EON distributed computing project 

• http://theory.cm.utexas.edu/fida/ FIDA Distributed computing framework

upon which eon is built


• http://theory.cm.utexas.edu/vtsttools/ Dimer, NEB, and dynamical matrix 
methods implemented in the VASP code 

• http://theory.cm.utexas.edu/bader/ Bader charge density analysis 


